Physics-based Animation Sound: Progress and Challenges

Doug_James

Doug James

(Stanford University)


Please LOG IN to view the video.

Date: February 24, 2016

Description:

Decades of advances in computer graphics have made it possible to convincingly animate a wide range of physical phenomena, such as fracturing solids and splashing water. Unfortunately, our visual simulations are essentially “silent movies” with sound added as an afterthought. In this talk, I will describe recent progress on physics-based sound synthesis algorithms that can help simulate rich multi-sensory experiences where graphics, motion, and sound are synchronized and highly engaging. I will describe work on specific sound phenomena, and highlight the important roles played by precomputation techniques, and reduced-order models for vibration, radiation, and collision processing.

More information: https://profiles.stanford.edu/doug-james

Further Information:

Doug L. James is a Full Professor of Computer Science at Stanford University since June 2015, and was previously an Associate Professor of Computer Science at Cornell University from 2006-2015. He holds three degrees in applied mathematics, including a Ph.D. in 2001 from the University of British Columbia. In 2002 he joined the School of Computer Science at Carnegie Mellon University as an Assistant Professor, before joining Cornell in 2006. His research interests include computer graphics, computer sound, physically based animation, and reduced-order physics models. Doug is a recipient of a National Science Foundation CAREER award, and a fellow of both the Alfred P. Sloan Foundation and the Guggenheim Foundation. He recently received a Technical Achievement Award from The Academy of Motion Picture Arts and Sciences for “Wavelet Turbulence,” and the Katayanagi Emerging Leadership Prize from Carnegie Mellon University and Tokyo University of Technology. He was the Technical Papers Program Chair of ACM SIGGRAPH 2015.




Created: Thursday, February 25th, 2016