Learned Image Synthesis for Computational Displays

Lei Xiao

(Facebook)


Please LOG IN to view the video.

Date: May 20, 2020

Description:

Addressing vergence-accommodation conflict in head-mounted displays (HMDs) requires resolving two interrelated problems. First, the hardware must support viewing sharp imagery over the full accommodation range of the user. Second, HMDs should accurately reproduce retinal defocus blur to correctly drive accommodation. A multitude of accommodation-supporting HMDs have been proposed, with three architectures receiving particular attention: varifocal, multifocal, and light field displays. These designs all extend depth of focus, but rely on computationally expensive rendering and optimization algorithms to reproduce accurate defocus blur (often limiting content complexity and interactive applications). To date, no unified framework has been proposed to support driving these emerging HMDs using commodity content. In this talk, we will present DeepFocus, a generic, end-to-end convolutional neural network designed to efficiently solve the full range of computational tasks for accommodation-supporting HMDs. This network is demonstrated to accurately synthesize defocus blur, focal stacks, multilayer decompositions, and multiview imagery using only commonly available RGB-D images, enabling real-time, near-correct depictions of retinal blur with a broad set of accommodation-supporting HMDs.

Further Information:

Lei Xiao is a Research Scientist at Facebook Reality Labs. He obtained his PhD from University of British Columbia under supervision of Wolfgang Heidrich. His research interests include computational photography and image synthesis for virtual and mixed reality.




Created: Saturday, May 23rd, 2020