“A look towards the future of computational optical microscopy”

Rafael Piestun

(University of Colorado, Boulder)

Please LOG IN to view the video.

Date: March 3, 2021


Optical computational imaging seeks enhanced performance and new functionality by the joint design of illumination, unconventional optics, detectors, and reconstruction algorithms. Among the emergent approaches in this field, two remarkable examples enable overcoming the diffraction limit and imaging through complex media.
Abbe’s resolution limit has been overcome enabling unprecedented opportunities for optical imaging at the nanoscale. Fluorescence imaging using photoactivatable or photoswitchable molecules within computational optical systems offers single molecule sensitivity within a wide field of view. The advent of three-dimensional point spread function engineering associated with optimal reconstruction algorithms provides a unique approach to further increase resolution in three dimensions.
Focusing and imaging through strongly scattering media has also been accomplished recently in the optical regime. By using a feedback system and optical modulation, the resulting wavefronts overcome the effects of multiple scattering upon propagation through the medium. Phase-control holographic techniques help characterize scattering media at high-speed using micro-electro-mechanical technology, allowing focusing through a temporally dynamic, strongly scattering sample, or a multimode fiber. In this talk we will further discuss implications for ultrathin optical endoscopy and adaptive nonlinear wavefront shaping.

Further Information:

Prof. Rafael Piestun received MSc. and Ph.D. degrees in Electrical Engineering from the Technion – Israel Institute of Technology. From 1998 to 2000 he was a researcher at Stanford University. Since 2001 he has been with the Department of Electrical and Computer Engineering and the Department of Physics at the University of Colorado – Boulder. Professor Piestun is a fellow of the Optical Society of America, was a Fulbright scholar, an Eshkol fellow, received a Honda Initiation Grant award, a Minerva award, a Provost Achievement Award, and El-Op and Gutwirth prizes. He served in the editorial committee of Optics and Photonics News and was associate editor for Applied Optics. He was the Director and Principal Investigator of the NSF-IGERT program in Computational Optical Sensing and Imaging and is co-Principal Investigator of the NSF Science and Technology Center STROBE. He is also founder of the startup Double Helix Optics that received the SPIE Prism Award and the First Place in the Luminate Competition in Optics and Photonics. His areas of interest include computational optical imaging, superresolution microscopy, volumetric photonic devices, scattering optics, and ultrafast optics.

Created: Friday, March 5th, 2021