Cross-domain knowledge sharing in PDP models:
How learned, distributed representations support metaphor and analogy

Paul Thibodeau
May 4, 2012
how does the brain make meaning?

1. predictive error driven learning
2. sensitivity to coherent covariation
3. distributed representation

How do we think about things that we cannot experience at all?
- abstract concepts like TIME, JUSTICE, IDEAS
- complex social issues like CRIME or the ECONOMY
how does the brain make meaning?

How do we go beyond the information given to attribute unseen properties to things? For example, when you see a bird on a branch, how do you know it might fly away?
how does the brain make meaning?

How do we go beyond the information given to attribute unseen properties to things? For example, when you see a bird on a branch, how do you know it might fly away?

How do we learn about and represent abstract concepts?
- TIME, VIRTUE, IDEAS
- with which we have little or no direct perceptual experience
how does the brain make meaning?

How do we go beyond the information given to attribute unseen properties to things? For example, when you see a bird on a branch, how do you know it might fly away?

How do we learn about and represent abstract concepts?
- TIME, VIRTUE, IDEAS
- with which we have little or no direct perceptual experience
IDEAS are FOOD

I hope this lecture is food for thought
And that you can really sink your teeth into it
And that it’s not too hard to digest
Especially if the claims are hard to swallow
Which might be the case if it were filled with half-baked ideas and warmed-over theories
Those leave a bad taste in everyone’s mouth
TIME is SPACE

Next Wednesday’s meeting has been moved forward two days.

I started hearing the noise at noon but then it continued through the afternoon: from noon to five.

I will see you before 4 o’clock.

The reception after the talk will be fun.

The deadline is approaching.

The war is behind us.

His whole future is before him.
“Metaphor is not just a matter of language, that is, of mere words... On the contrary, human thought processes are largely metaphorical... The human conceptual system is metaphorically structured and defined.”

Lakoff and Johnson
Metaphors We Live By (1980)
1. is our knowledge of abstract domains grounded in more concrete, experiential domains?
2. does metaphoric grounding or inference require a specialized mapping mechanism?
3. how does this process of knowledge sharing emerge?

cross-domain knowledge sharing
cross-domain knowledge sharing

1. is our knowledge of abstract domains grounded in more concrete, experiential domains?
cross-domain knowledge sharing

1. Is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. What kinds of representations and processes could support the metaphoric grounding of abstract concepts?
cross-domain knowledge sharing

1. Is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. What kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. A simulation of conceptual metaphor: TIME as SPACE
cross-domain knowledge sharing

1. is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. a simulation of conceptual metaphor: TIME as SPACE
Next Wednesday’s meeting has been moved forward two days.

I started hearing the noise at noon but then it continued through the afternoon: from noon to five.

I will see you before 4 o’clock.

The reception after the talk will be fun.

The deadline is approaching.

The war is behind us.

His whole future is before him.

We’re approaching the deadline.
Next Wednesday’s meeting has been moved forward two days.

I started hearing the noise at noon but then it continued through the afternoon: from noon to five.

I will see you before 4 o’clock.

The reception after the talk will be fun.

The deadline is approaching.

The war is behind us.

His whole future is before him.

We’re approaching the deadline.
TIME is SPACE

Next Wednesday’s meeting has been moved forward two days.

I started hearing the noise at noon but then it continued through the afternoon: from noon to five.

I will see you before 4 o’clock.

The reception after the talk will be fun.

The deadline is approaching.

The war is behind us.

His whole future is before him.

We’re approaching the deadline.
Next Wednesday’s meeting has been moved forward two days. Is the meeting now on Monday or Friday?
Next Wednesday’s meeting has been moved forward two days. Is the meeting now on Monday or Friday?
Next Wednesday’s meeting has been moved forward two days. Is the meeting now on Monday or Friday?

Monday

Friday

Boroditsky (2000)
Next Wednesday’s meeting has been moved forward two days. Is the meeting now on Monday or Friday?

Boroditsky (2000)
cross-domain knowledge sharing

1. is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. a simulation of conceptual metaphor: TIME as SPACE
cross-domain knowledge sharing

1. is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. a simulation of conceptual metaphor: TIME as SPACE
what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

A. metaphor as analogy
 i. metaphors are processed as on-line mappings between domains
 ii. representations: disjoint propositions
 iii. mechanism: analogy/metaphor-specific mapping
metaphor as analogy

The Stripe Family

The Solid Family
metaphor as analogy

The Stripe Family

FatherStripes husband_of MotherStripes
<table>
<thead>
<tr>
<th>person 1</th>
<th>relation</th>
<th>person 2</th>
<th>person 1</th>
<th>relation</th>
<th>person 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>papa stripes</td>
<td>father_of</td>
<td>son & daughter stripes</td>
<td>papa solids</td>
<td>father_of</td>
<td>son & daughter solids</td>
</tr>
<tr>
<td>papa stripes</td>
<td>husband_of</td>
<td>mama stripes</td>
<td>papa solids</td>
<td>husband_of</td>
<td>mama solids</td>
</tr>
<tr>
<td>mama stripes</td>
<td>mother_of</td>
<td>son & daughter stripes</td>
<td>mama solids</td>
<td>mother_of</td>
<td>son & daughter solids</td>
</tr>
<tr>
<td>mama stripes</td>
<td>wife_of</td>
<td>papa stripes</td>
<td>mama solids</td>
<td>wife_of</td>
<td>papa solids</td>
</tr>
<tr>
<td>son stripes</td>
<td>son_of</td>
<td>papa & mama stripes</td>
<td>son solids</td>
<td>son_of</td>
<td>papa & mama solids</td>
</tr>
<tr>
<td>son stripes</td>
<td>brother_of</td>
<td>daughter stripes</td>
<td>son solids</td>
<td>brother_of</td>
<td>daughter solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>daughter_of</td>
<td>papa & mama stripes</td>
<td>daughter solids</td>
<td>daughter_of</td>
<td>papa & mama solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>sister_of</td>
<td>son stripes</td>
<td>daughter solids</td>
<td>sister_of</td>
<td>son solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>owner_of</td>
<td>dog stripes</td>
<td>daughter solids</td>
<td>owner_of</td>
<td>dog solids</td>
</tr>
<tr>
<td>dog stripes</td>
<td>pet_of</td>
<td>daughter stripes</td>
<td>dog solids</td>
<td>pet_of</td>
<td>daughter solids</td>
</tr>
<tr>
<td>person 1</td>
<td>relation</td>
<td>person 2</td>
<td>person 1</td>
<td>relation</td>
<td>person 2</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>papa stripes</td>
<td>father_of</td>
<td>son & daughter stripes</td>
<td>papa solids</td>
<td>father_of</td>
<td>son & daughter solids</td>
</tr>
<tr>
<td>papa stripes</td>
<td>husband_of</td>
<td>mama stripes</td>
<td>papa solids</td>
<td>husband_of</td>
<td>mama solids</td>
</tr>
<tr>
<td>mama stripes</td>
<td>mother_of</td>
<td>son & daughter stripes</td>
<td>mama solids</td>
<td>mother_of</td>
<td>son & daughter solids</td>
</tr>
<tr>
<td>mama stripes</td>
<td>wife_of</td>
<td>papa stripes</td>
<td>mama solids</td>
<td>wife_of</td>
<td>papa solids</td>
</tr>
<tr>
<td>son stripes</td>
<td>son_of</td>
<td>papa & mama stripes</td>
<td>son solids</td>
<td>son_of</td>
<td>papa & mama solids</td>
</tr>
<tr>
<td>son stripes</td>
<td>brother_of</td>
<td>daughter stripes</td>
<td>son solids</td>
<td>brother_of</td>
<td>daughter solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>daughter_of</td>
<td>papa & mama stripes</td>
<td>daughter solids</td>
<td>daughter_of</td>
<td>papa & mama solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>sister_of</td>
<td>son stripes</td>
<td>daughter solids</td>
<td>sister_of</td>
<td>dog solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>owner_of</td>
<td>dog stripes</td>
<td>daughter solids</td>
<td>owner_of</td>
<td>dog solids</td>
</tr>
<tr>
<td>dog stripes</td>
<td>pet_of</td>
<td>daughter stripes</td>
<td>dog solids</td>
<td>pet_of</td>
<td>daughter solids</td>
</tr>
</tbody>
</table>

who is the solids’ daughter the sister of?
metaphor as analogy
metaphor as analogy

The Stripe Family

The Solid Family
metaphor as analogy

The Stripe Family

The Solid Family
metaphor as analogy

The Stripe Family

The Solid Family
what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

A. metaphor as analogy
 i. metaphors are processed as on-line mappings between domains
 ii. representations: disjoint propositions
 iii. mechanism: analogy/metaphor-specific mapping
what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

A. metaphor as analogy
 i. metaphors are processed as on-line mappings between domains
 ii. representations: disjoint propositions
 iii. mechanism: analogy/metaphor-specific mapping

B. metaphor as generalization
 i. relational structure is included in conceptual representations, which are high-dimensional patterns (representations), and metaphor is generalization over those patterns (representations)
 ii. representations: overlapping and distributed
 iii. mechanism: spreading activation / generalization
metaphor as generalization

The Solid Family

Hinton (1986)

Thibodeau, Flusberg, Glick, & Sternberg (in prep)
metaphor as generalization

The Solid Family

Hinton (1986)

Thibodeau, Flusberg, Glick, & Sternberg (in prep)
metaphor as generalization

Thibodeau, Flusberg, Glick, & Sternberg (in prep)

Hinton (1986)
Emergent Analogy

Figure 7. Each of the plots above illustrates the similarity structure of the learned Subject representations in simulation 3. Hierarchical clusters are on the left and correlation matrices are on the right.

Early in training (the upper panels), the network does not group individuals by family or relation. Later in training, at 1,300 epochs (the lower panels), the network has aligned the families according to their relational similarity.

Several proponents of the Structural approach to analogy have suggested that a defining feature of analogical reasoning is the ability to perform structured pattern completion (Gentner & Markman 1993; 1995), which refers to a process whereby “a partial representation of the person1 relation person2 is completed.”

Even though daughter solid and daughter stripe were never presented to the model simultaneously, the network learned to associate them—the predictive error-driven learning mechanism leveraged the shared relational structure of the two domains to learn more efficiently.

- encoding relational structure not just features

Thibodeau, Flusberg, Glick, & Sternberg (in prep)

Hinton (1986)
Emergent Analogy

Figure 7. Each of the plots above illustrates the similarity structure of the learned Subject representations in simulation 3. Hierarchical clusters are on the left and correlation matrices are on the right.

Early in training (the upper panels), the network does not group individuals by family or relation. Later in training, at 1,300 epochs (the lower panels), the network has aligned the families according to their relational similarity.

Several proponents of the Structural approach to analogy have suggested that a defining feature of analogical reasoning is the ability to perform structured pattern completion (Gentner & Markman 1993; 1995), which refers to a process whereby “a partial representation of the person1 relation person2 even though daughter solid and daughter stripe were never presented to the model simultaneously, the network learned to associate them—the predictive error-driven learning mechanism leveraged the shared relational structure of the two domains to learn more efficiently.

The Solid Family
The Stripe Family

Thibodeau, Flusberg, Glick, & Sternberg (in prep)

Hinton (1986)
Figure 7. Each of the plots above illustrates the similarity structure of the learned Subject representations in simulation 3. Hierarchical clusters are on the left and correlation matrices are on the right.

Early in training (the upper panels), the network does not group individuals by family or relation. Later in training, at 1,300 epochs (the lower panels), the network has aligned the families according to their relational similarity.

Several proponents of the Structural approach to analogy have suggested that a defining feature of analogical reasoning is the ability to perform structured pattern completion (Gentner & Markman 1993; 1995), which refers to a process whereby “a partial representation of the person1 relation person2..." even though daughter solid and daughter stripe were never presented to the model simultaneously, the network learned to associate them - the predictive error-driven learning mechanism leveraged the shared relational structure of the two domains to learn more... encoding relational structure not just features Thibodeau, Flusberg, Glick, & Sternberg (in prep) Hinton (1986)
<table>
<thead>
<tr>
<th>person 1</th>
<th>relation</th>
<th>person 2</th>
<th>person 1</th>
<th>relation</th>
<th>person 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>papa stripes</td>
<td>father_of</td>
<td>son & daughter stripes</td>
<td>papa solids</td>
<td>father_of</td>
<td>son & daughter solids</td>
</tr>
<tr>
<td>papa stripes</td>
<td>husband_of</td>
<td>mama stripes</td>
<td>papa solids</td>
<td>husband_of</td>
<td>mama solids</td>
</tr>
<tr>
<td>mama stripes</td>
<td>mother_of</td>
<td>son & daughter stripes</td>
<td>mama solids</td>
<td>mother_of</td>
<td>son & daughter solids</td>
</tr>
<tr>
<td>mama stripes</td>
<td>wife_of</td>
<td>papa stripes</td>
<td>mama solids</td>
<td>wife_of</td>
<td>papa solids</td>
</tr>
<tr>
<td>son stripes</td>
<td>son_of</td>
<td>papa & mama stripes</td>
<td>son solids</td>
<td>son_of</td>
<td>papa & mama solids</td>
</tr>
<tr>
<td>son stripes</td>
<td>brother_of</td>
<td>daughter stripes</td>
<td>son solids</td>
<td>brother_of</td>
<td>daughter solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>daughter_of</td>
<td>papa & mama stripes</td>
<td>daughter solids</td>
<td>daughter_of</td>
<td>papa & mama solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>sister_of</td>
<td>son stripes</td>
<td>daughter solids</td>
<td>sister_of</td>
<td>dog solids</td>
</tr>
<tr>
<td>daughter stripes</td>
<td>owner_of</td>
<td>dog stripes</td>
<td>daughter solids</td>
<td>owner_of</td>
<td>dog solids</td>
</tr>
<tr>
<td>dog stripes</td>
<td>pet_of</td>
<td>daughter stripes</td>
<td>dog solids</td>
<td>pet_of</td>
<td>daughter solids</td>
</tr>
</tbody>
</table>

who is the solids’ daughter the sister of?

Hinton (1986)
Thibodeau, Flusberg, Glick, & Sternberg (in prep)
Emergent Analogy

Figure 7. Each of the plots above illustrates the similarity structure of the learned Subject representations in simulation 3. Hierarchical clusters are on the left and correlation matrices are on the right.

Early in training (the upper panels), the network does not group individuals by family or relation. Later in training, at 1,300 epochs (the lower panels), the network has aligned the families according to their relational similarity.

Several proponents of the Structural approach to analogy have suggested that a defining feature of analogical reasoning is the ability to perform structured pattern completion (Gentner & Markman 1993; 1995), which refers to a process whereby “a partial representation of the person1

The Solid Family

The Stripe Family

relation

person2

Thibodeau, Flusberg, Glick, & Sternberg (in prep)

Hinton (1986)
what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

A. metaphor as analogy
 i. metaphors are processed as on-line mappings between domains
 ii. representations: disjoint
 iii. mechanism: analogy/metaphor-specific mapping

B. metaphor as generalization
 i. relational structure is included in conceptual representations, which are high-dimensional patterns (representations), and metaphor is generalization over those patterns (representations)
 ii. representations: overlapping and distributed
 iii. mechanism: spreading activation / generalization
cross-domain knowledge sharing

1. is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. a simulation of conceptual metaphor: TIME as SPACE
cross-domain knowledge sharing

1. is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. what kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. a simulation of conceptual metaphor: TIME as SPACE
TIME as SPACE

Network as agent experiencing its world, making predictions about it, learning about how actual events differ from predictions.
TIME as SPACE

Network as agent experiencing its world, making predictions about it, learning about how actual events differ from predictions.

The world consists of items and relations (spatial and temporal sequences).
the spatial environment

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>west_of</td>
<td>blue, green, yellow</td>
</tr>
<tr>
<td>green</td>
<td>east_of</td>
<td>red, blue</td>
</tr>
</tbody>
</table>

Flusberg, Thibodeau, Sternberg, & Glick (2010)
the temporal environment

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>west_of</td>
<td>blue, green, yellow</td>
</tr>
<tr>
<td>green</td>
<td>east_of</td>
<td>red, blue</td>
</tr>
<tr>
<td>Monday</td>
<td>earlier_than</td>
<td>Wednesday, Friday, Sunday</td>
</tr>
<tr>
<td>Friday</td>
<td>later_than</td>
<td>Monday, Wednesday</td>
</tr>
</tbody>
</table>

Flusberg, Thibodeau, Sternberg, & Glick (2010)
Network as agent experiencing its world, making predictions about it, learning about how actual events differ from predictions.

The world consists of items and relations (spatial and temporal sequences).

The network will learn about two spatial perspectives.
movement in SPACE

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>self & blue</td>
<td>moves_forward</td>
<td>green</td>
</tr>
<tr>
<td>self & yellow</td>
<td>moves_backward</td>
<td>green</td>
</tr>
</tbody>
</table>

Flusberg, Thibodeau, Sternberg, & Glick (2010)
movement in SPACE

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>self & blue</td>
<td>moves_forward</td>
<td>green</td>
</tr>
<tr>
<td>self & yellow</td>
<td>moves_backward</td>
<td>green</td>
</tr>
<tr>
<td>other & blue</td>
<td>moves_forward</td>
<td>red</td>
</tr>
<tr>
<td>other & green</td>
<td>moves_backward</td>
<td>yellow</td>
</tr>
</tbody>
</table>
TIME as SPACE

Network as agent experiencing its world, making predictions about it, learning about how actual events differ from predictions.

The world consists of items and relations (spatial and temporal sequences).

The network will learn about two spatial perspectives.

It will also learn that using the word “forward” in the temporal domain is ambiguous.
movement in TIME

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>meeting & Wednesday</td>
<td>moves_forward</td>
<td>Monday</td>
</tr>
<tr>
<td>meeting & Wednesday</td>
<td>moves_forward</td>
<td>Friday</td>
</tr>
</tbody>
</table>

Flusberg, Thibodeau, Sternberg, & Glick (1986)
what happens when the network is asked about next Wednesday’s meeting being moved forward?

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>meeting & Wednesday</td>
<td>moves_forward</td>
<td>ambiguous</td>
</tr>
</tbody>
</table>

Mean Activation

Monday

Friday

What happens when the network is asked about next Wednesday’s meeting being moved forward?
TIME as SPACE

Network as agent experiencing its world, making predictions about it, learning about how actual events differ from predictions.

The world consists of items and relations (spatial and temporal sequences).

The network will learn about two spatial perspectives.

It will also learn that using spatial language in the temporal domain is ambiguous.

Can the network adopt a particular spatial perspective to disambiguate the temporal domain?
Flusberg, Thibodeau, Sternberg, & Glick (2010)
Wednesday Meeting
other

item
output
relation

moves forward

Flusberg, Thibodeau, Sternberg, & Glick (2010)
can the network use structure from the spatial domain to resolve an ambiguity in the temporal domain?

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>meeting & Wednesday</td>
<td>moves_forward</td>
<td>ambiguous</td>
</tr>
<tr>
<td>meeting & Wed & self</td>
<td>moves_forward</td>
<td>biased toward Friday</td>
</tr>
</tbody>
</table>
can the network use structure from the spatial domain to resolve an ambiguity in the temporal domain?

<table>
<thead>
<tr>
<th>item</th>
<th>relation</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>meeting & Wednesday</td>
<td>moves_forward</td>
<td>ambiguous</td>
</tr>
<tr>
<td>meeting & Wed & self</td>
<td>moves_forward</td>
<td>biased toward Friday</td>
</tr>
<tr>
<td>meeting & Wed & other</td>
<td>moves_forward</td>
<td>biased toward Monday</td>
</tr>
</tbody>
</table>

Online Spatial Context

Mean Activation

- Monday
- Friday

item

output

Mean Activation

- ambiguous
- self-moving
- other-moving
cross-domain knowledge sharing

1. Is our knowledge of abstract domains grounded in more concrete, experiential domains?

2. What kinds of representations and processes could support the metaphoric grounding of abstract concepts?

3. A simulation of conceptual metaphor: TIME as SPACE
implications of this view

1. at least some analogies and metaphors can be thought of as generalization over relational structure (and not the product of an on-line mapping mechanism)

2. direct co-occurrence is not necessary for such learning to take place (high-order co-occurrence of relational structure can facilitate cross-domain learning)

3. metaphor (indeed, all kinds of cross-domain knowledge sharing) is a natural byproduct of a conceptual system that utilizes an error-driven learning mechanism to build overlapping, distributed representations

a. this may be why metaphors are so common

b. why they don't take any longer to process
implications of this view

1. metaphor is a natural byproduct of a conceptual system that utilizes an error-driven learning mechanism to build overlapping, distributed representations
 a. this may be why metaphors are so common
 b. why they don’t take any longer to process
implications of this view

1. metaphor is a natural byproduct of a conceptual system that utilizes an error-driven learning mechanism to build overlapping, distributed representations
 a. this may be why metaphors are so common
 b. why they don’t take any longer to process

2. at least some analogies and metaphors can be thought of as generalization over relational structure (and not the product of an on-line mapping mechanism)
implications of this view

1. metaphor is a natural byproduct of a conceptual system that utilizes an error-driven learning mechanism to build overlapping, distributed representations
 a. this may be why metaphors are so common
 b. why they don’t take any longer to process

2. at least some analogies and metaphors can be thought of as generalization over relational structure (and not the product of an on-line mapping mechanism)

3. direct co-occurrence is not necessary for such learning to take place (high-order co-occurrence of relational structure can facilitate cross-domain learning)
Thanks!

Stephen J. Flusberg

Daniel A. Sternberg

Jeremy J. Glick