Psych 216A: Statistics and data analysis in MATLAB

Lecture 6: Model reliability

Kendrick Kay
Error bars on model parameters via bootstrapping

True model
\(y = 0.5x + 2 \)

Model to be fitted
\(y = ax + b \)

True model
\(y = 0.5x + 2 \)

Model to be fitted
\(y = ax + b \)
Correlated regressors yield correlated errors

Model:
\[y = w_1 x_1 + w_2 x_2 \]

- \(x_1 \) and \(x_2 \) uncorrelated

Model:
\[y = w_1 x_1 + w_2 x_2 \]

- \(x_1 \) and \(x_2 \) correlated
Distinction between accuracy and reliability

![Diagram showing the distinction between accuracy and reliability with data points and fitted models.]

- **Accurate**:
 - Reliable
 - Inaccurate

- **Unreliable**:
 - (not common)
Bootstrapping and cross-validation applies to all models

- Linear: \(y = ax + b \)
- Linearized: \(y = ax^2 + bx + c \)

Use bootstrapping to estimate model reliability

Use cross-validation to estimate model accuracy

- Parametric nonlinear: \(y = ax^n \)
- Nonparametric nonlinear (Nearest-neighbor)

Cross-validated \(R^2 \) values:
- \(y = ax + b \)
- \(y = ax^2 + bx + c \)
- \(y = ax^n \) (Nearest-neighbor)