First-Photon Imaging and Other Imaging with Few Photons


Vivek Goyal

(Boston University)

Please LOG IN to view the video.

Date: February 22, 2017


LIDAR systems use single-photon detectors to enable long-range reflectivity and depth imaging. By exploiting an inhomoheneous Poisson process observation model and the typical structure of natural scenes, first-photon imaging demonstrates the possibility of accurate LIDAR with only 1 detected photon per pixel, where half of the detections are due to (uninformative) ambient light. I will explain the simple ideas behind first-photon imaging. Then I will touch upon related subsequent works that mitigate the limitations of detector arrays, withstand 25-times more ambient light, allow for unknown ambient light levels, and capture multiple depths per pixel.

More information:

Further Information:

Vivek Goyal received the M.S. and Ph.D. degrees in electrical engineering from the University of California, Berkeley, where he received the Eliahu Jury Award for outstanding achievement in systems, communications, control, or signal processing. He was a Member of Technical Staff at Bell Laboratories, a Senior Research Engineer for Digital Fountain, and the Esther and Harold E. Edgerton Associate Professor of Electrical Engineering at MIT. He was an adviser to 3dim Tech, winner of the MIT $100K Entrepreneurship Competition Launch Contest Grand Prize, and consequently with Nest Labs. He is now an Associate Professor of Electrical and Computer Engineering at Boston University.

Created: Friday, February 24th, 2017